
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Improving Recommendation Quality on YouTube
and Netflix with Singular Value Decomposition

Haegen Quinston - 13523109,2

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523109@std.stei.itb.ac.id, 2haegenquinston@gmail.com

Abstract—Recommendation systems have become an
integral part of enhancing user experience across various
platforms by providing personalized suggestions. Singular
Value Decomposition (SVD), a matrix factorization technique,
is widely adopted in collaborative filtering-based
recommendation systems to address challenges such as
scalability and cold start issues. This paper investigates the
effectiveness of SVD as a standalone method for building
recommendation systems. Testing was conducted across user
activity clusters and movie popularity groups to evaluate the
model's predictive accuracy through metrics such as Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE). The
results indicate that while SVD captures latent relationships
effectively, it struggles with sparsity and new user challenges,
emphasizing the need for hybrid approaches and advanced
techniques for robust recommendation quality.

Keywords—SVD, user preference, model, sparsity

I. INTRODUCTION

Recommendation systems have become an integral part
of our digital experiences, shaping the way we interact with
various platforms and consume content. Across industries,
these systems drive personalization, offering users tailored
suggestions that enhance engagement and satisfaction.
From e-commerce platforms guiding customers to relevant
products, to streaming services like Netflix and Spotify
curating content based on viewing and listening habits,
recommendation systems are pivotal in meeting user
expectations. Similarly, social media platforms use these
tools to promote meaningful connections and trends, while
the gaming industry leverages them to provide players with
immersive and personalized in-game experiences. These
applications not only improve user retention but also
significantly contribute to the business success of these
platforms.

Despite their success, recommendation systems face

critical challenges, particularly in addressing scalability
and the cold start problem. Scalability refers to the ability
to handle massive datasets efficiently as the number of
users and items grows. Platforms like YouTube and Netflix
manage enormous datasets comprising millions of user
interactions and thousands of content items, requiring
algorithms that balance computational efficiency with

accuracy. The cold start problem, on the other hand, arises
when there is insufficient data for new users or items,
making it difficult to provide accurate recommendations.
Overcoming these challenges is essential to maintaining
the relevance and performance of recommendation
systems in dynamic environments.

Singular Value Decomposition (SVD), a matrix
factorization technique, has been widely regarded as an
effective approach for addressing challenges in
recommendation systems. By reducing the dimensionality
of sparse user-item interaction matrices, SVD captures
latent relationships between users and items, enabling
predictions in large-scale systems. However, this paper
aims to test whether SVD alone is sufficient to form a
robust recommendation system. Through a series of
evaluations, it highlights the strengths of SVD in
identifying patterns, while also exposing its limitations,
such as data sparsity and cold start challenges, which
impact its predictive accuracy.

II. THEORETICAL FOUNDATIONS

A. Recommendation Systems
Recommendation systems are specialized information

filtering tools that provide personalized suggestions to
users by predicting items of interest based on user
behavior, preferences, and past interactions. These systems
are categorized into three main types: Content-Based
Filtering, Collaborative Filtering, and Hybrid Models.

Content-Based Filtering analyzes item attributes, such as

genres or tags, to recommend items similar to those a user
has previously interacted with. While effective for
personalization, it often lacks diversity in suggestions.

Hybrid Models address the limitations of individual

approaches by combining methods like Content-Based and
Collaborative Filtering. By leveraging the strengths of
both, hybrid models enhance recommendation diversity
and accuracy. These systems are commonly used in large-
scale platforms like YouTube and Netflix, where
personalization and scalability are critical.

Meanwhile, Collaborative Filtering (CF) is a widely

adopted approach that predicts a user’s interests by

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

analyzing preferences from multiple users. The core
assumption is that if user A shares similar preferences with
user B in one context, A is likely to agree with B in another.

CF is categorized into two types:

1. User-Based Collaborative Filtering:
Recommends items that similar users have liked.

2. Item-Based Collaborative Filtering:
Recommends items similar to those a user has
liked.

A significant challenge in CF is the sparsity of the user-
item interaction matrix, where many entries are missing
due to the vast number of items and limited user
interactions. This sparsity often hinders effective similarity
computations between users or items. Each of these
systems lays the foundation for advanced techniques like
Singular Value Decomposition (SVD), which refines
recommendation accuracy through matrix factorization.

B. Matrix Factorization

Matrix Factorization is a pivotal technique in
collaborative filtering, widely utilized within
recommendation systems to predict user preferences for
items. The core idea involves decomposing a large user-
item interaction matrix into the product of two lower-
dimensional matrices, effectively capturing latent factors
that represent underlying user interests and item
characteristics.

Given a user-item interaction matrix 𝑅 of dimensions

𝑚 𝑥 𝑛 (w 𝑚 is the number of users and 𝑛 is the number of
items), MF approximates 𝑅 as the product of two matrices
[5]:

𝑅 ≈ U x VT

 𝑈: An 𝑚 𝑥 𝑘 matrix where each row corresponds
to a user's latent factors.

 V: An 𝑛 𝑥 𝑘 matrix where each row corresponds
to an item's latent factors.

 𝑘: The number of latent factors, typically much
smaller than 𝑚 or 𝑛, reducing the dimensionality
of the data.

C. Singular Value Decomposition

Singular Value Decomposition (SVD) is a factorization
of a certain matrix into 3 matrices. It has several algebraic
properties and conveys important insights regarding linear
transformations. SVD is widely used in various fields, such
as data science and data compression, among others.

For a given matrix 𝐴 of size 𝑚 𝑥 𝑛, SVD decomposes it
into three matrices [4]:

 𝐴 = 𝑈 ∑ 𝑉
𝑇

The matrix 𝑈 is an 𝑚 𝑥 𝑚 orthogonal matrix, where its

columns are left singular vectors of 𝐴. 𝑈 has a unique
property, where all its columns are orthogonal (𝑈 T𝑈 = 𝐼)
and the number of non-zero columns in 𝑈 corresponds to

the rank of 𝐴. 𝑈 represents the row space of 𝐴 in the
transformed domain.

The matrix ∑ is an 𝑚 𝑥 𝑛 diagonal matrix with singular

values (σ1, σ2, …) sorted in descending order along the
diagonal. The singular values are the square roots of the
eigenvalues of 𝐴T𝐴. Singular values indicate the magnitude
of the corresponding singular vectors and provide insight
into the importance of each component.

Finally, 𝑉T is the transpose of an 𝑛 𝑥 𝑛 orthogonal

matrix, where 𝑉 contains the right singular vectors of 𝐴.
The vectors form an orthonormal basis for the row space
of 𝐴. Each column in 𝑉T can be interpreted as a ‘direction’
in the transformed space of the columns of 𝐴.

While SVD provides a mathematical framework to

extract latent user and item factors, its performance is
heavily influenced by the sparsity of the interaction matrix.
High levels of missing data can lead to inaccurate
predictions, as the decomposition relies on patterns in
available ratings. Furthermore, SVD struggles with the
cold start problem, where insufficient historical data for
new users or items hinders its ability to generate
meaningful recommendations.

D. Root Mean Squared Error & Mean Absolute

Error
The RMSE (Root Mean Squared Error) is a widely used
metric to measure the differences between predicted values
and observed values. It places greater emphasis on larger
errors, making it particularly sensitive to outliers.
For a given set of user-item pairs 𝑇, RMSE is calculated as
follows:

Where:

- rui is the actual rating of user u for item i
- r^ui is the predicted rating of user u for item i

A lower RMSE value indicates better predictive accuracy,
making it a critical metric for evaluating recommendation
systems.

The MAE (Mean Absolute Error) measures the average
absolute difference between predicted ratings and actual
ratings. It is calculated using the same variables as RMSE:

Unlike RMSE, MAE treats all errors equally and is less
sensitive to outliers. A lower MAE value also signifies
more accurate predictions, offering a complementary
perspective on model performance. Together, RMSE and

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

MAE provide a comprehensive understanding of a
recommendation system's accuracy.

III. IMPLEMENTATION & ANALYSIS

A. Dataset
The original dataset utilized in this study is obtained

from GroupLens, a research organization that provides
publicly available datasets collected from the MovieLens
platform. These datasets are widely used in
recommendation system research due to their detailed user-
item interaction records and metadata. The dataset is freely
accessible to the public and can be downloaded here.

For this study, the original large dataset was utilized to
ensure robust evaluation of the recommendation system.
The dataset contains millions of user interactions,
including ratings, user IDs, and movie metadata. Using a
large dataset helps to reflect the real-world complexities
and challenges of recommendation systems, such as
scalability and sparsity. Although, for computational
purposes this dataset is reduced to just 10000 users and
2000 movies to ensure the program doesn’t lag. A train-test
split (80/20) was applied to the data to evaluate the model’s
predictive performance.

movies.csv
This file contains metadata about movies, including their

unique identifiers, titles, and genres. Below are its
columns:

 movieId: A unique identifier for each movie.
 title: The name of the movie, including its release

year.
 genres: A pipe-separated list of genres associated

with the movie.

Table 3.1: Sample data from movies.csv

movieId title genres
1 Toy Story (1995) Adventure
2 Jumanji (1995) Adventure
3 Grumpier Old Men

(1995)
Comedy

4 Waiting to Exhale (1995) Comedy
5 Father of the Bride Part II Comedy

ratings.csv
This file records the interactions between users and

movies in the form of ratings. It includes the following
columns:

 userId: A unique identifier for each user.
 movieId: A unique identifier for each movie

(links to movies.csv).
 rating: The rating provided by the user for the

movie, typically on a 0.5–5.0 scale.
 timestamp: A Unix timestamp indicating when

the rating was submitted.

Table 3.2: Sample data from ratings.csv

movieId movieId rating timestamp
1 1 4.0 964982703
1 3 4.0 964981247
2 1 5.0 964982224
2 4 2.0 964982931
3 1 4.0 964982400

From the dataset, histograms and heatmaps were

generated to analyze the distribution of ratings and the
sparsity of user-item interactions. These visualizations
ensured that the data used in this experiment was
representative of real-world challenges and highlighted
potential biases or sparsity issues.

Fig 3.1: A histogram showing the distribution of ratings on the

dataset

Fig 3.2: A bar chart showing the distribution of ratings per user

These visualizations demonstrated that the dataset

provided a clear structure for testing, with histograms
showcasing a well-defined distribution of rating scores and
the number of ratings per user. The distribution analysis
highlights the diversity of user interactions and rating
behaviors, ensuring the dataset is representative for
evaluating the model. Although, the cause for the majority
of ratings per user being so high is because it is sorted for
the top 10000 users with the most ratings.

This dataset reflects the kind of data typically utilized in
recommendation systems for platforms like Netflix and

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

YouTube. In the case of YouTube, user interactions such
as likes, dislikes, and subscriptions serve as analogs to the
'ratings' column, while videos take the place of movies,
highlighting the adaptability of recommendation
algorithms across different content types and user
behaviors.

B. Recommendation System Model with SVD

The recommendation module made in Python is
designed to implement a collaborative filtering-based
recommendation system using Singular Value
Decomposition (SVD). It begins by loading and
preprocessing the dataset, filtering for the most active users
and popular movies to optimize performance. The main
functionality lies in the construction of a user-item
interaction matrix, which is factorized using SVD into
latent user and item feature matrices. This process
identifies underlying patterns in user preferences and item
characteristics, enabling predictions for unrated items. The
module also includes functionality to generate
personalized recommendations for a given user, ensuring
that the recommended movies are not already watched.

a) Data Preprocessing

Fig 3.3: The function for loading the data

The preprocessing process includes mapping user IDs

and movie IDs to sequential indices and creating a sparse
user-item matrix. An 80/20 train-test split was applied to
ensure that the model could be evaluated on unseen data.
This split ensures that the training set contains sufficient
interactions to learn meaningful patterns while the test set
provides an independent basis for evaluating prediction
accuracy.

b) Matrix Factorization

Fig 3.4 The function for predicting ratings using SVD

This function constructs a sparse matrix from the

`rating`, `userId`, and `movieId` columns, where the rows
represent users, the columns represent movies, and the
values correspond to user ratings. Singular Value
Decomposition (SVD) is then applied to factorize the
matrix into three components: 𝑈, which contains user
latent features; ∑, the diagonal matrix of singular values
representing the importance of these features; and 𝑉, which
contains item latent features. Finally, the matrix is
reconstructed by combining these components, and the
resulting predictions are stored in a DataFrame for easy
access and further analysis.

c) Prediction

def load_data():
 ratings =
pd.read_csv('Recommendation_Syste
m_Modeling/test/large_ratings.csv
')
 movies =
pd.read_csv('Recommendation_Syste
m_Modeling/test/large_movies.csv'
)
 # Map userId and movieId to
sequential indices
 ratings['userId'] =
ratings['userId'].astype('categor
y').cat.codes
 ratings['movieId'] =
ratings['movieId'].astype('catego
ry').cat.codes

 # Split data into train and
test sets (80/20 split)
 test_fraction = 0.2
 test_indices =
np.random.choice(ratings.index,
size=int(len(ratings) *
test_fraction), replace=False)
 test_data =
ratings.loc[test_indices]
 train_data =
ratings.drop(test_indices)

 return train_data, test_data,
movies

def
build_recommendation_system(ratin
gs):
 user_item_matrix_sparse =
csr_matrix(
 (ratings['rating'],
(ratings['userId'],
ratings['movieId']))
)

 # SVD
 U, sigma, Vt =
svds(user_item_matrix_sparse,
k=20)
 sigma = np.diag(sigma)

 # Predicted ratings
 predicted_ratings =
np.dot(np.dot(U, sigma), Vt)
 predicted_ratings_df =
pd.DataFrame(
 predicted_ratings,
 index=np.arange(user_item
_matrix_sparse.shape[0]),
 columns=np.arange(user_it
em_matrix_sparse.shape[1])
)

 return predicted_ratings_df

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Fig 3.5 The function for returning recommended movies

Personalized recommendations are generated to the user

using this function. It reconstructs the matrix to predict
ratings for missing user-item interactions. The function
ensures that the film recommendations are not redundant
with the user’s previously watched content, but reflective
of the user’s ratings given.

While the dataset provides a more realistic evaluation of
the recommendation system, it also introduces challenges
such as computational complexity and scalability. These
challenges were addressed by optimizing the SVD
implementation and limiting the number of latent
dimensions to balance accuracy and performance. Future
studies could explore additional techniques, such as hybrid
models or deep learning-based approaches, to further
improve scalability and recommendation quality.

IV. RECOMMENDATION SYSTEM TESTING

A. Testing
Testing will be conducted using three distinct clusters,

with RMSE and MAE calculated for each cluster type to
evaluate the recommendation system's performance.

For the first sample, the data is segmented into three

groups based on user activity levels: high, medium, and
low activity users. This segmentation is achieved through
the methods shown below:

Fig 4.1 Separating high, medium, and low activity users

The RMSE and the MAE is as follows:

Fig 4.2 RMSE and MAE for the first sampling

The results indicate that Singular Value Decomposition
(SVD) did not perform well across the tested datasets.
According to established benchmarks, an RMSE in the
range of 0.75–1.5 is generally considered good. However,
the test results significantly exceeded this range,
highlighting limitations in the SVD model's ability to
handle the given data.

Fig 4.3 The setup for the 2nd sampling

In the second sample, the low-medium-high activity
clusters were redefined, and the dataset size was expanded
to include the top 25,000 user ratings and 5,000 movies.

Fig 4.4 RMSE and MAE for the 2nd sampling

As expected, the RMSE for this configuration was even
worse. Despite the increased number of movies, the system
struggled due to the inherent sparsity of user ratings, which
further impacted the model’s performance.

Fig 4.5 The setup code (including RMSE and MAE formula) for
the third sampling

def
recommend_movies_with_watched(use
r_id, predicted_ratings_df,
ratings, movies,
num_recommendations=10):
 # Check if the user exists
 if user_id not in
predicted_ratings_df.index:
 return f"User {user_id}
not found in the dataset.", []

 # Display watched movies
 watched_movies_ids =
ratings[ratings['userId'] ==
user_id]['movieId'].unique()
 watched_movies =
movies[movies['movieId'].isin(wat
ched_movies_ids)][['movieId',
'title']]

 # Generate recommendations
 user_ratings =
predicted_ratings_df.loc[user_id]
 recommendations_ids =
user_ratings[~user_ratings.index.
isin(watched_movies_ids)].sort_va
lues(ascending=False).head(num_re
commendations).index
 recommendations =
movies[movies['movieId'].isin(rec
ommendations_ids)][['movieId',
'title']]

 return watched_movies,
recommendations

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

In the third sample, clusters were segmented based on
movie popularity into three groups: the top 10% of movies
by rating count (Popular Movies), the next 40% (Moderate
Movies), and the bottom 50% (Niche Movies). The dataset
size remained consistent, with 25,000 top user ratings and
5,000 movies.

Fig 4.6 RMSE and MAE for the 3rd sampling

The results mirrored the trends observed in the first cluster,
with the top 10% (Popular Movies) achieving the best
RMSE and MAE scores, followed by the Moderate group,
and the bottom 50% (Niche Movies) performing the worst.
This pattern underscores the model's ability to predict
ratings more accurately for widely rated movies while
struggling with sparsely rated items.

B. Test Discussion

These findings demonstrate that while SVD can
uncover underlying patterns in dense datasets, its
performance diminishes with sparse data and low-activity
users. The high RMSE and MAE scores indicate that SVD
alone is insufficient for creating a robust recommendation
system, especially in real-world scenarios with diverse and
incomplete data. The cold start problem further contributes
to the model's limitations, as it cannot make accurate
predictions for new users or items with little to no prior
data.

To address these issues, hybrid recommendation
models that integrate collaborative filtering with content-
based approaches could provide a solution by leveraging
item metadata and implicit feedback. Additionally,
applying regularization techniques during matrix
factorization can improve robustness against sparse data,
while advanced models like Neural Collaborative Filtering
(NCF) may better capture complex user-item relationships.
Incorporating implicit interactions such as clicks or views
and increasing the diversity of the dataset can also enhance
the model’s performance.

V. CONCLUSION

From the research conducted in this paper, it can be
concluded that Singular Value Decomposition (SVD) is a
fundamental approach for building recommendation
systems, particularly in collaborative filtering. However,
the testing results suggest that SVD alone, without the
integration of additional methods, is insufficient for
constructing a fully effective recommendation system.
Challenges such as data sparsity and the cold start problem
for new users were prominently highlighted during the
evaluation, impacting the system's predictive accuracy and
overall performance.

To address these challenges, future work should explore
hybrid models that combine collaborative filtering with
content-based approaches to mitigate sparsity and cold
start issues. Additionally, incorporating implicit feedback,
such as user interactions or viewing history, could enrich
the dataset and improve recommendation quality.
Advanced techniques, such as neural collaborative filtering
or context-aware recommendations, may further enhance
system performance by capturing complex, non-linear
user-item relationships. These improvements can build
upon the foundation established by SVD, paving the way
for more robust and personalized recommendation
systems.

VI. APPENDIX

For those who are interested in further development of
this project, you can access the repository here.

VII. ACKNOWLEDGMENT

The author would like to express the deepest gratitude to
the Lord Almighty for His guidance, wisdom, and
blessings throughout the development period of this paper.
It is through His kindness that mental barriers were broken
down, clarity was achieved in solving complex problems,
and the work was successfully completed. His presence has
been a constant source of strength and inspiration, enabling
perseverance during the most demanding phases of this
endeavor. For this, the author is profoundly thankful.

The author would also like to extend heartfelt gratitude
to all those who contributed to the preparation of this paper,
including:

1. Ir. Rila Mandala, M.Eng., Ph.D., lecturer of the
K1 IF2123 Linear Algebra and Geometry course,
for his invaluable guidance and the knowledge
imparted during the lectures,

2. The author’s parents, for their continuous support,
encouragement, and motivation throughout this
process, and

3. The author’s friends and peers, for their insightful
ideas and encouragement during the making of
this paper.

Their contributions and support have been vital in the
successful completion of this work.

REFERENCES

[1] IBM. What is a recommendation engine? IBM,
https://www.ibm.com/think/topics/recommendation-engine.
Accessed 28 December 2024.

[2] Roy, Deepjyoti; Dutta, Mala (2022). A systematic review and
research perspective on recommender systems, Journal of Big Data.

[3] Ricci, Francesco; Rokach, Lior; Shapira, Bracha. Recommender
Systems Handbook (3 ed.), Springer.

[4] Munir, Rinaldi. Singular Value Decomposition (Bag. 1), Bahan
Kuliah IF 2123. Rinaldi Munir,
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/20
23-2024/Algeo-21-Singular-value-decomposition-Bagian1-
2023.pdf. Accessed 29 December 2024

[5] Zonoozi, Ali. What is Matrix Factorization? BuiltIn,
https://builtin.com/articles/matrix-factorization. Accessed 29
December 2024.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

STATEMENT OF ORIGINALITY

I hereby declare that this paper I have written is my own
work, not an adaptation or translation of someone else's
paper, and not plagiarism.

Bandung, 27th December 2024

Haegen Quinston
13523109

