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Abstract—Recommendation systems have become an 
integral part of enhancing user experience across various 
platforms by providing personalized suggestions. Singular 
Value Decomposition (SVD), a matrix factorization technique, 
is widely adopted in collaborative filtering-based 
recommendation systems to address challenges such as 
scalability and cold start issues. This paper investigates the 
effectiveness of SVD as a standalone method for building 
recommendation systems. Testing was conducted across user 
activity clusters and movie popularity groups to evaluate the 
model's predictive accuracy through metrics such as Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE). The 
results indicate that while SVD captures latent relationships 
effectively, it struggles with sparsity and new user challenges, 
emphasizing the need for hybrid approaches and advanced 
techniques for robust recommendation quality. 
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I.   INTRODUCTION 

Recommendation systems have become an integral part 
of our digital experiences, shaping the way we interact with 
various platforms and consume content. Across industries, 
these systems drive personalization, offering users tailored 
suggestions that enhance engagement and satisfaction. 
From e-commerce platforms guiding customers to relevant 
products, to streaming services like Netflix and Spotify 
curating content based on viewing and listening habits, 
recommendation systems are pivotal in meeting user 
expectations. Similarly, social media platforms use these 
tools to promote meaningful connections and trends, while 
the gaming industry leverages them to provide players with 
immersive and personalized in-game experiences. These 
applications not only improve user retention but also 
significantly contribute to the business success of these 
platforms. 

 
Despite their success, recommendation systems face 

critical challenges, particularly in addressing scalability 
and the cold start problem. Scalability refers to the ability 
to handle massive datasets efficiently as the number of 
users and items grows. Platforms like YouTube and Netflix 
manage enormous datasets comprising millions of user 
interactions and thousands of content items, requiring 
algorithms that balance computational efficiency with 

accuracy. The cold start problem, on the other hand, arises 
when there is insufficient data for new users or items, 
making it difficult to provide accurate recommendations. 
Overcoming these challenges is essential to maintaining 
the relevance and performance of recommendation 
systems in dynamic environments. 

Singular Value Decomposition (SVD), a matrix 
factorization technique, has been widely regarded as an 
effective approach for addressing challenges in 
recommendation systems. By reducing the dimensionality 
of sparse user-item interaction matrices, SVD captures 
latent relationships between users and items, enabling 
predictions in large-scale systems. However, this paper 
aims to test whether SVD alone is sufficient to form a 
robust recommendation system. Through a series of 
evaluations, it highlights the strengths of SVD in 
identifying patterns, while also exposing its limitations, 
such as data sparsity and cold start challenges, which 
impact its predictive accuracy. 

 
II.  THEORETICAL FOUNDATIONS 

A. Recommendation Systems 
Recommendation systems are specialized information 

filtering tools that provide personalized suggestions to 
users by predicting items of interest based on user 
behavior, preferences, and past interactions. These systems 
are categorized into three main types: Content-Based 
Filtering, Collaborative Filtering, and Hybrid Models. 

 
Content-Based Filtering analyzes item attributes, such as 

genres or tags, to recommend items similar to those a user 
has previously interacted with. While effective for 
personalization, it often lacks diversity in suggestions. 

 
Hybrid Models address the limitations of individual 

approaches by combining methods like Content-Based and 
Collaborative Filtering. By leveraging the strengths of 
both, hybrid models enhance recommendation diversity 
and accuracy. These systems are commonly used in large-
scale platforms like YouTube and Netflix, where 
personalization and scalability are critical. 

 
Meanwhile, Collaborative Filtering (CF) is a widely 

adopted approach that predicts a user’s interests by 
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analyzing preferences from multiple users. The core 
assumption is that if user A shares similar preferences with 
user B in one context, A is likely to agree with B in another. 

 
CF is categorized into two types: 

1. User-Based Collaborative Filtering: 
Recommends items that similar users have liked. 

2. Item-Based Collaborative Filtering: 
Recommends items similar to those a user has 
liked. 

A significant challenge in CF is the sparsity of the user-
item interaction matrix, where many entries are missing 
due to the vast number of items and limited user 
interactions. This sparsity often hinders effective similarity 
computations between users or items. Each of these 
systems lays the foundation for advanced techniques like 
Singular Value Decomposition (SVD), which refines 
recommendation accuracy through matrix factorization. 
 
B. Matrix Factorization 

Matrix Factorization is a pivotal technique in 
collaborative filtering, widely utilized within 
recommendation systems to predict user preferences for 
items. The core idea involves decomposing a large user-
item interaction matrix into the product of two lower-
dimensional matrices, effectively capturing latent factors 
that represent underlying user interests and item 
characteristics. 

 
Given a user-item interaction matrix 𝑅 of dimensions 

𝑚 𝑥 𝑛 (w 𝑚 is the number of users and 𝑛 is the number of 
items), MF approximates 𝑅 as the product of two matrices 
[5]: 
 

𝑅 ≈ U x VT 
 

 𝑈: An 𝑚 𝑥 𝑘 matrix where each row corresponds 
to a user's latent factors. 

 V: An 𝑛 𝑥 𝑘 matrix where each row corresponds 
to an item's latent factors. 

 𝑘: The number of latent factors, typically much 
smaller than 𝑚 or 𝑛, reducing the dimensionality 
of the data. 

 
C. Singular Value Decomposition 

Singular Value Decomposition (SVD) is a factorization 
of a certain matrix into 3 matrices. It has several algebraic 
properties and conveys important insights regarding linear 
transformations. SVD is widely used in various fields, such 
as data science and data compression, among others. 

For a given matrix 𝐴 of size 𝑚 𝑥 𝑛, SVD decomposes it 
into three matrices [4]: 

 𝐴 =  𝑈 ∑ 𝑉
𝑇 

 
The matrix 𝑈 is an  𝑚 𝑥 𝑚 orthogonal matrix, where its 

columns are left singular vectors of 𝐴. 𝑈 has a unique 
property, where all its columns are orthogonal (𝑈 T𝑈 = 𝐼) 
and the number of non-zero columns in 𝑈 corresponds to 

the rank of 𝐴. 𝑈 represents the row space of 𝐴 in the 
transformed domain. 

 
The matrix ∑ is an 𝑚 𝑥 𝑛 diagonal matrix with singular 

values (σ1, σ2, …) sorted in descending order along the 
diagonal. The singular values are the square roots of the 
eigenvalues of 𝐴T𝐴. Singular values indicate the magnitude 
of the corresponding singular vectors and provide insight 
into the importance of each component. 

 
Finally, 𝑉T is the transpose of an 𝑛 𝑥 𝑛 orthogonal 

matrix, where 𝑉 contains the right singular vectors of 𝐴. 
The vectors form an orthonormal basis for the row space 
of 𝐴. Each column in 𝑉T can be interpreted as a ‘direction’ 
in the transformed space of the columns of 𝐴. 

 
While SVD provides a mathematical framework to 

extract latent user and item factors, its performance is 
heavily influenced by the sparsity of the interaction matrix. 
High levels of missing data can lead to inaccurate 
predictions, as the decomposition relies on patterns in 
available ratings. Furthermore, SVD struggles with the 
cold start problem, where insufficient historical data for 
new users or items hinders its ability to generate 
meaningful recommendations. 
 
D. Root Mean Squared Error & Mean Absolute 

Error 
The RMSE (Root Mean Squared Error) is a widely used 
metric to measure the differences between predicted values 
and observed values. It places greater emphasis on larger 
errors, making it particularly sensitive to outliers. 
For a given set of user-item pairs 𝑇, RMSE is calculated as 
follows: 
 

 
Where: 

- rui is the actual rating of user u for item i 
- r^ui is the predicted rating of user u for item i 

 
A lower RMSE value indicates better predictive accuracy, 
making it a critical metric for evaluating recommendation 
systems. 
 
The MAE (Mean Absolute Error) measures the average 
absolute difference between predicted ratings and actual 
ratings. It is calculated using the same variables as RMSE: 
 

 
 
Unlike RMSE, MAE treats all errors equally and is less 
sensitive to outliers. A lower MAE value also signifies 
more accurate predictions, offering a complementary 
perspective on model performance. Together, RMSE and 
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MAE provide a comprehensive understanding of a 
recommendation system's accuracy. 
 

III.   IMPLEMENTATION & ANALYSIS 

A. Dataset 
The original dataset utilized in this study is obtained 

from GroupLens, a research organization that provides 
publicly available datasets collected from the MovieLens 
platform. These datasets are widely used in 
recommendation system research due to their detailed user-
item interaction records and metadata. The dataset is freely 
accessible to the public and can be downloaded here.  
 

For this study, the original large dataset was utilized to 
ensure robust evaluation of the recommendation system. 
The dataset contains millions of user interactions, 
including ratings, user IDs, and movie metadata. Using a 
large dataset helps to reflect the real-world complexities 
and challenges of recommendation systems, such as 
scalability and sparsity. Although, for computational 
purposes this dataset is reduced to just 10000 users and 
2000 movies to ensure the program doesn’t lag. A train-test 
split (80/20) was applied to the data to evaluate the model’s 
predictive performance. 
 

movies.csv 
This file contains metadata about movies, including their 

unique identifiers, titles, and genres. Below are its 
columns: 

 movieId: A unique identifier for each movie. 
 title: The name of the movie, including its release 

year. 
 genres: A pipe-separated list of genres associated 

with the movie. 
 
Table 3.1: Sample data from movies.csv 

movieId title genres 
1 Toy Story (1995) Adventure 
2 Jumanji (1995) Adventure 
3 Grumpier Old Men 

(1995) 
Comedy 

4 Waiting to Exhale (1995) Comedy 
5 Father of the Bride Part II Comedy 

 
ratings.csv 
This file records the interactions between users and 

movies in the form of ratings. It includes the following 
columns: 

 userId: A unique identifier for each user. 
 movieId: A unique identifier for each movie 

(links to movies.csv). 
 rating: The rating provided by the user for the 

movie, typically on a 0.5–5.0 scale. 
 timestamp: A Unix timestamp indicating when 

the rating was submitted. 
 
Table 3.2: Sample data from ratings.csv 

movieId movieId rating timestamp 
1 1 4.0 964982703 
1 3 4.0 964981247 
2 1 5.0 964982224 
2 4 2.0 964982931 
3 1 4.0 964982400 

 
From the dataset, histograms and heatmaps were 

generated to analyze the distribution of ratings and the 
sparsity of user-item interactions. These visualizations 
ensured that the data used in this experiment was 
representative of real-world challenges and highlighted 
potential biases or sparsity issues. 
 

 
Fig 3.1: A histogram showing the distribution of ratings on the 

dataset 

 
Fig 3.2: A bar chart showing the distribution of ratings per user 

 
These visualizations demonstrated that the dataset 

provided a clear structure for testing, with histograms 
showcasing a well-defined distribution of rating scores and 
the number of ratings per user. The distribution analysis 
highlights the diversity of user interactions and rating 
behaviors, ensuring the dataset is representative for 
evaluating the model. Although, the cause for the majority 
of ratings per user being so high is because it is sorted for 
the top 10000 users with the most ratings. 

This dataset reflects the kind of data typically utilized in 
recommendation systems for platforms like Netflix and 



Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 
 

YouTube. In the case of YouTube, user interactions such 
as likes, dislikes, and subscriptions serve as analogs to the 
'ratings' column, while videos take the place of movies, 
highlighting the adaptability of recommendation 
algorithms across different content types and user 
behaviors. 

 
B. Recommendation System Model with SVD 

The recommendation module made in Python is 
designed to implement a collaborative filtering-based 
recommendation system using Singular Value 
Decomposition (SVD). It begins by loading and 
preprocessing the dataset, filtering for the most active users 
and popular movies to optimize performance. The main 
functionality lies in the construction of a user-item 
interaction matrix, which is factorized using SVD into 
latent user and item feature matrices. This process 
identifies underlying patterns in user preferences and item 
characteristics, enabling predictions for unrated items. The 
module also includes functionality to generate 
personalized recommendations for a given user, ensuring 
that the recommended movies are not already watched.  

 
a) Data Preprocessing 

 
Fig 3.3: The function for loading the data 

 
The preprocessing process includes mapping user IDs 

and movie IDs to sequential indices and creating a sparse 
user-item matrix. An 80/20 train-test split was applied to 
ensure that the model could be evaluated on unseen data. 
This split ensures that the training set contains sufficient 
interactions to learn meaningful patterns while the test set 
provides an independent basis for evaluating prediction 
accuracy. 
 

b) Matrix Factorization 
 

 
Fig 3.4 The function for predicting ratings using SVD 
 
This function constructs a sparse matrix from the 

`rating`, `userId`, and `movieId` columns, where the rows 
represent users, the columns represent movies, and the 
values correspond to user ratings. Singular Value 
Decomposition (SVD) is then applied to factorize the 
matrix into three components: 𝑈, which contains user 
latent features; ∑, the diagonal matrix of singular values 
representing the importance of these features; and 𝑉, which 
contains item latent features. Finally, the matrix is 
reconstructed by combining these components, and the 
resulting predictions are stored in a DataFrame for easy 
access and further analysis. 

 
c) Prediction 

 

def load_data(): 
    ratings = 
pd.read_csv('Recommendation_Syste
m_Modeling/test/large_ratings.csv
') 
    movies = 
pd.read_csv('Recommendation_Syste
m_Modeling/test/large_movies.csv'
) 
    # Map userId and movieId to 
sequential indices 
    ratings['userId'] = 
ratings['userId'].astype('categor
y').cat.codes 
    ratings['movieId'] = 
ratings['movieId'].astype('catego
ry').cat.codes 
 
    # Split data into train and 
test sets (80/20 split) 
    test_fraction = 0.2 
    test_indices = 
np.random.choice(ratings.index, 
size=int(len(ratings) * 
test_fraction), replace=False) 
    test_data = 
ratings.loc[test_indices] 
    train_data = 
ratings.drop(test_indices) 
 
    return train_data, test_data, 
movies 

def 
build_recommendation_system(ratin
gs): 
    user_item_matrix_sparse = 
csr_matrix( 
        (ratings['rating'], 
(ratings['userId'], 
ratings['movieId'])) 
    ) 
 
    # SVD 
    U, sigma, Vt = 
svds(user_item_matrix_sparse, 
k=20) 
    sigma = np.diag(sigma) 
 
    # Predicted ratings 
    predicted_ratings = 
np.dot(np.dot(U, sigma), Vt) 
    predicted_ratings_df = 
pd.DataFrame( 
        predicted_ratings,  
        index=np.arange(user_item
_matrix_sparse.shape[0]),  
        columns=np.arange(user_it
em_matrix_sparse.shape[1]) 
    ) 
 
    return predicted_ratings_df 
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Fig 3.5 The function for returning recommended movies 
 
Personalized recommendations are generated to the user 

using this function. It reconstructs the matrix to predict 
ratings for missing user-item interactions. The function 
ensures that the film recommendations are not redundant 
with the user’s previously watched content, but reflective 
of the user’s ratings given. 
 

While the dataset provides a more realistic evaluation of 
the recommendation system, it also introduces challenges 
such as computational complexity and scalability. These 
challenges were addressed by optimizing the SVD 
implementation and limiting the number of latent 
dimensions to balance accuracy and performance. Future 
studies could explore additional techniques, such as hybrid 
models or deep learning-based approaches, to further 
improve scalability and recommendation quality. 

 
IV.  RECOMMENDATION SYSTEM TESTING 

A. Testing 
Testing will be conducted using three distinct clusters, 

with RMSE and MAE calculated for each cluster type to 
evaluate the recommendation system's performance. 

 
For the first sample, the data is segmented into three 

groups based on user activity levels: high, medium, and 
low activity users. This segmentation is achieved through 
the methods shown below: 

 
Fig 4.1 Separating high, medium, and low activity users 

 
The RMSE and the MAE is as follows: 

 
Fig 4.2 RMSE and MAE for the first sampling 
 
The results indicate that Singular Value Decomposition 
(SVD) did not perform well across the tested datasets. 
According to established benchmarks, an RMSE in the 
range of 0.75–1.5 is generally considered good. However, 
the test results significantly exceeded this range, 
highlighting limitations in the SVD model's ability to 
handle the given data. 
 

 
Fig 4.3 The setup for the 2nd sampling 
 

In the second sample, the low-medium-high activity 
clusters were redefined, and the dataset size was expanded 
to include the top 25,000 user ratings and 5,000 movies. 

 
Fig 4.4 RMSE and MAE for the 2nd sampling 
 

As expected, the RMSE for this configuration was even 
worse. Despite the increased number of movies, the system 
struggled due to the inherent sparsity of user ratings, which 
further impacted the model’s performance. 
 

 
Fig 4.5 The setup code (including RMSE and MAE formula) for 
the third sampling 

def 
recommend_movies_with_watched(use
r_id, predicted_ratings_df, 
ratings, movies, 
num_recommendations=10): 
    # Check if the user exists 
    if user_id not in 
predicted_ratings_df.index: 
        return f"User {user_id} 
not found in the dataset.", [] 
 
    # Display watched movies 
    watched_movies_ids = 
ratings[ratings['userId'] == 
user_id]['movieId'].unique() 
    watched_movies = 
movies[movies['movieId'].isin(wat
ched_movies_ids)][['movieId', 
'title']] 
 
    # Generate recommendations 
    user_ratings = 
predicted_ratings_df.loc[user_id] 
    recommendations_ids = 
user_ratings[~user_ratings.index.
isin(watched_movies_ids)].sort_va
lues(ascending=False).head(num_re
commendations).index 
    recommendations = 
movies[movies['movieId'].isin(rec
ommendations_ids)][['movieId', 
'title']] 
     
    return watched_movies, 
recommendations 
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In the third sample, clusters were segmented based on 
movie popularity into three groups: the top 10% of movies 
by rating count (Popular Movies), the next 40% (Moderate 
Movies), and the bottom 50% (Niche Movies). The dataset 
size remained consistent, with 25,000 top user ratings and 
5,000 movies. 
 

 
Fig 4.6 RMSE and MAE for the 3rd sampling 
 
The results mirrored the trends observed in the first cluster, 
with the top 10% (Popular Movies) achieving the best 
RMSE and MAE scores, followed by the Moderate group, 
and the bottom 50% (Niche Movies) performing the worst. 
This pattern underscores the model's ability to predict 
ratings more accurately for widely rated movies while 
struggling with sparsely rated items. 
 
B. Test Discussion 
 

These findings demonstrate that while SVD can 
uncover underlying patterns in dense datasets, its 
performance diminishes with sparse data and low-activity 
users. The high RMSE and MAE scores indicate that SVD 
alone is insufficient for creating a robust recommendation 
system, especially in real-world scenarios with diverse and 
incomplete data. The cold start problem further contributes 
to the model's limitations, as it cannot make accurate 
predictions for new users or items with little to no prior 
data. 

To address these issues, hybrid recommendation 
models that integrate collaborative filtering with content-
based approaches could provide a solution by leveraging 
item metadata and implicit feedback. Additionally, 
applying regularization techniques during matrix 
factorization can improve robustness against sparse data, 
while advanced models like Neural Collaborative Filtering 
(NCF) may better capture complex user-item relationships. 
Incorporating implicit interactions such as clicks or views 
and increasing the diversity of the dataset can also enhance 
the model’s performance. 

 
V.   CONCLUSION 

From the research conducted in this paper, it can be 
concluded that Singular Value Decomposition (SVD) is a 
fundamental approach for building recommendation 
systems, particularly in collaborative filtering. However, 
the testing results suggest that SVD alone, without the 
integration of additional methods, is insufficient for 
constructing a fully effective recommendation system. 
Challenges such as data sparsity and the cold start problem 
for new users were prominently highlighted during the 
evaluation, impacting the system's predictive accuracy and 
overall performance. 

 

To address these challenges, future work should explore 
hybrid models that combine collaborative filtering with 
content-based approaches to mitigate sparsity and cold 
start issues. Additionally, incorporating implicit feedback, 
such as user interactions or viewing history, could enrich 
the dataset and improve recommendation quality. 
Advanced techniques, such as neural collaborative filtering 
or context-aware recommendations, may further enhance 
system performance by capturing complex, non-linear 
user-item relationships. These improvements can build 
upon the foundation established by SVD, paving the way 
for more robust and personalized recommendation 
systems. 

 
VI.   APPENDIX 

For those who are interested in further development of 
this project, you can access the repository here. 
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